Medium
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
nums = [2, 1]
, you can add a '+'
before 2
and a '-'
before 1
and concatenate them to build the expression "+2-1"
.Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1
Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
class Solution {
int findTargetSumWays(List<int> nums, int s) {
int sum = nums.reduce((a, b) => a + b);
s = s.abs();
// Invalid s, return 0
if (s > sum || (sum + s) % 2 != 0) {
return 0;
}
int target = (sum + s) ~/ 2;
List<List<int>> dp = List.generate(target + 1, (i) => List.filled(nums.length + 1, 0));
dp[0][0] = 1;
// Handle the case of empty knapsack
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 0) {
dp[0][i + 1] = dp[0][i] * 2;
} else {
dp[0][i + 1] = dp[0][i];
}
}
for (int i = 1; i <= target; i++) {
for (int j = 0; j < nums.length; j++) {
dp[i][j + 1] += dp[i][j];
if (nums[j] <= i) {
dp[i][j + 1] += dp[i - nums[j]][j];
}
}
}
return dp[target][nums.length];
}
}